Super-resolution microscopes provide unprecedented resolution and insights into the molecular landscape. Nikon offers a range of super-resolution systems for high-speed imaging applications and single-molecule level imaging needs.
Nikon N-SIM S Super-Resolution Microscope

Doubling the conventional resolution limit for live cell time-lapse imaging.
The N-SIM S Super Resolution Microscope is a unique high-speed structured illumination system that achieves acquisition speeds of up to 15 fps, enabling fast biological processes to be captured at twice the spatial resolution of conventional light microscopes (up to 115nm in XY). Combining the N-SIM S and a confocal microscope gives you the flexibility to select a location in the confocal image and switch to super-resolution to view the desired part of the location in minute detail.
Nikon N-SIM E Super-Resolution Microscope

A personal super-resolution microscope that provides the same high resolution as the N-SIM S.
N-SIM E is a streamlined, affordable super-resolution system that provides double the resolution of conventional light microscopes. Combining N-SIM E and a confocal microscope allows you the flexibility to select a location in the confocal image, and easily switch to view it in super-resolution, enabling the acquisition of more detail.
Nikon N-STORM Super-Resolution Microscope

Tenfold increased resolution in x, y and z.
STochastic Optical Reconstruction Microscopy (STORM) reconstructs a super-resolution fluorescence image by combining precise localization information for individual fluorophores in complex fluorescent specimens. N-STORM takes advantage of Nikon’s powerful Ti2-E inverted microscope and applies high-accuracy, multi-color localization and reconstruction in three dimensions (xyz) to enable super-resolution imaging at tenfold the resolution of conventional light microscopes (up to approximately 20 nm in xy).
This powerful technology enables the visualization of molecular interactions at the nanoscopic level, opening up new worlds of scientific understanding.